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Abstract. The droplet model is investigated in the critical region by Monte Carlo simulation 
with a novel definition of droplets. The size distribution of droplets of size I is found to 
be n, = I-’ expl-(K - K,)’slc], where ( K  - Kc)” stands for the surface tension with K 
denoting the reduced temperature, and slC for the surface area; the numerical constants 
are given by ~ = 2 . 2 1 ,  p = 1.0 and [=0.78 for the simple cubic lattice. The droplet is 
prescribed properly by taking account of the density correlation between the centre and 
the perimeter, which has no singularity at the percolation point. 

The droplet model has contributed much to our understanding of phase transitions, 
particularly of nucleation, the metastable phase and the coexistent phase line (Langer 
1967, Fisher 1967). This phenomenological concept has been widely accepted as being 
effective in the low temperature region, where a droplet forms to optimise the surface 
energy. Near criticality, however, the functional form of the surface free energy is not 
clear owing to poor knowledge of the entropy term. 

In the critical region, the size distribution of droplets proposed by Fisher (1967) 
has been examined directly by computer simulations for the Ising spin lattices (Muller- 
Krumbhaar and Stoll 1967, Stoll et al 1976). According to these simulations, there 
appears a percolation singularity, which makes difficult a simple interpretation of the 
droplet in terms of clustering of particles (Muller-Krumbhaar 1974). However, from 
such a correlated percolation problem, various model theories have developed: the 
Coniglio-Klein model (1980, KertCsz et a1 1983) based on the Kasteleyn-Fortuin 
technique ( 1969), polychromatic percolation in supercooled water (Stanley 1979) and 
the liquid-like cell percolation in liquid-glass transitions (Cohen and Grest 1979). 

In the present paper, we reconsider Fisher’s droplet model by means of Monte 
Carlo (MC) simulation for an Ising lattice, where a phenomenological scaling theory 
is utilised by assuming the free energy of a droplet to consist of the bulk term and the 
surface one. On analysing the simulation data, we notice the size of the density 
fluctuation which should be less than the correlation length 6. This condition is very 
important in prescribing the connectedness of a pair of particles in a cluster. A careful 
criterion for the connectedness allows us to get over the difficulty of the percolation 
singularity, since the correlation length is not singular at the percolation point (Nagao 
1980). The cluster thus well defined will be shown to have the features of droplets, 
particularly near criticality. 
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Our computer simulation is described below in detail. For the Ising system with 
periodic boundary condition, we take the Hamiltonian to be 

with ( i ,  j )  denoting a nearest-neighbour pair in a simple cubic lattice. In the simulation, 
we generate about 7 x lo3 steps/spin at temperatures E = 0.04, 0.075,O.lO and 0.15 with 
E = 1 - T /  T, and 6 x lo3 at E = 0.20, where the total number N of spins is taken to be 
30 x30 x30. On the lattice site, we randomly distribute up spins, whose density is 
made equal to that expected for the system in equilibrium at the temperature of the 
experiment. The first MC steps, ranging from several hundred to a few thousand, are 
discarded until the equilibrium state is reached. 

In a Markovian chain of the spin configuration generated by the conventional 
method (Glauber dynamics), the size, the surface area and the radius of a droplet are 
defined as follows. 

(i)  For a given configuration of spins, we number the up-spin sites in the order in 
which the number of the nearest neighbours having up spin decreases: we do this 
randomly if two or more sites have the same number of nearest neighbours with up 
spin. This numbering is illustrated in figure 1. 

(ii) Of the up-spin sites thus numbered, we start with the first one ( 1  in figure 
l (b)) ,  and then visit the nearest-neighbouring sites ( 5 ,  8, 12, 7) at the first step, the 
next-nearest-neighbouring ones (3, 9, 14, 7-5) at the second step and so on. 

z; 
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Figure 1. Prescription of droplets. A snapshot of the configuration of the spins taken at 
the temperature 0.960 T, in a square lattice. The equilibrium density ( P ) ~  of the up spin 
is 0.092 for the total lattice. A dot (0) denotes an up-spin site; no down-spin site is marked. 
( a )  Droplets (connected dots 0-0) prescribed by the author's criterion. Dots stand for 
the original configuration of up-spin sites. Labelling with numbers and symbols is done 
for droplet construction: 0 denotes the starting point, + the centre and a full circle the 
radius R for each droplet. ( b )  Droplet construction. The density of the dots in each shell 
(labelled s-d) does not become less than (pk until in the f shell; the size 1 of the droplet 
is given by the total number of dots within the d shell; all the surface sites S are only in 
the f shell; 1=9, S=13,  R=2.54. For a dot (18), / = I ,  S = 4 ,  R=0.50. (c) Droplets 
(connected dots 0-0) based on the Coniglio-Klein criterion. 
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(iii) If we visit a down spin (1-12) in the above process, we stay there (1-3) in the 
next step. Thus we have a concentric shell (labelled by s-f) of the sites at every step 
with the starting point as the centre. 

(iv) We stop stepping when the up-spin density (p(r)), which is the average of the 
density p(r)  over all the sites (in the rth shell) visited at the rth step, becomes less 
than the thermal average density ( P ) ~  for the total system. 

(v) The size 1 of droplets is defined by the total number of up spins (at 1 and in 
s-d shells) which have been visited up to the last step, the number S(1) of the surface 
sites by the number of sites (in the f shell) just visited at the last step, and the radius 
R(1)  by the maximum distance between the centre (labelled by +) and an up spin in 
the droplet. (For the radius, we add one-half of the lattice constant to the maximum 
distance. Circles with the above radii are depicted in figure l(a).) 

(vi) Returning to the beginning, we choose the up-spin site of the earliest ordinal 
number (2) among the remaining up-spin sites and repeat the same procedures as 
before and so on. The procedure continues until the sites of interest are exhausted 
(figure l (a)) .  Here the up spins counted already in the preceding procedures are 
regarded as down spins to prevent double counting. 

The number S (  I )  of the surface sites thus obtained is plotted in figure 2 as a function 
of 1, which may be fitted to 
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Figure 2. Number S( I )  of surface sites as a function of size I for droplets. Index 3 equals 
0.783 (0); 0.775 ( x ) ;  0.765 (0);  0.753 (+ ) ;  0.768 (A). Marks x are shifted by log 2 on 
1 axis; 0 by 2 log 2;  + by 3 log 2; A by 4 log 2. 
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with 5 denoting the slope of the lines. The size of droplets as a function of the radius 
R has also proved to be fitted to 

l - R D ’  (3) 

with a fractal dimension D’, as can be seen in figure 3. 

e 

D 

e .  B 

2 1 1 \ 1 1  I 

1 2 3 4 5 6  10 
R 

Figure 3. Size I (  R )  as a function of radius for droplets. For the experimental temperatures, 
refer to figure 2. Marks X are shifted by 0.5 log 2 on the R axis; U by log 2;  + by 1.5 
log 2;  A by 2 log 2. 

Let us refer to a phenomenological scaling theory before going into an examination 
of the size distribution of droplets. In the critical region, the free energy density f 
follows the scaling law 

(4) 

where h is the field, L the scaling factor, d the Euclidean dimension, D = d - p /  v 
with /3 and v the familiar critical indices and f is a scaling function. For a partial 
system characterised by length R, the free energy density is then transformed into 

f( E ,  h )  = L - y (  ELI/: h L D ) ,  

f(e, h, R )  = ~ Y ~ f ( e L l ’ ~ ,  hLD, R L - ’ )  = R - d f ( ~ R l / ~ ~ ,  h R D ) ,  ( 5 )  

if the system has a dilational symmetry for the scaling. Let us assume R D  - 1 with R 
the radius and D the fractal dimension for droplets, though equation (3) does not 
offer sufficient evidence to support this assumption. Then we have 

f(e, h, 1 )  = l - d / D f ( ~ l l ’ Y D ,  h l ) .  ( 6 )  
The size distribution nl may be obtained from the partial derivative of the function f 
with respect to I :  

nl -af/al- I - (d’D)- ’n(El l ’uD,  h l ) ,  (7) 
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3 -  

L l  

which is identified with Fisher's results if n ( x ,  y )  - exp(ax + by). The scaling relation 
(7) does not change on replacing ~ 1 " " ~  by .s*IC, provided that 

p / l =  uD. (8) 

However, if the surface area S ( I )  is of the form slg with s a proportional constant, 
the surface tension Y ( E )  must be of the form 

? ( E )  = (K - Kc)* ,  (9) 

where K denotes J/kBT and K c =  0.2217 (Pawley et a1 1984). Dropping the field term, 
we predict the distribution function in the following form, 

n d ~ )  - I-' exp[-y(~)S(I)l ,  (10) 

with 7 = ( d /  D) + 1, because each droplet has no density correlation between the centre 
and the perimeter and is thus isolated from others in the average density ( p h  of spins. 

The distribution function predicted above proves relevant according to our simula- 
tion results. This is shown in figure 4. The index p can be determined from the slope 
of the curves for -log (n$') against I s  with the use of (2) and (9). They are tabulated 
in table 1. There exist some deviations of our simulation data from the scaling law 
(lo), for both regions of small and large values of 1. In the region of small 1, the 
deviation is due to the size effect, as pointed out by Kalos et a1 (1978) who proved 
failure of the scaling to occur for I <  10. It seems that the oscillations in nt reflect that 
the up spins (one spin occupies a finite cell) closely pack into the concentric shells to 
form a droplet. For large droplets, on the other hand, the size can exceed the correlation 
volume td. Since larger droplets occur less frequently, we need many more MC steps 
to establish the size distribution for large 1. 
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Table 1. Scaling indices for size distribution and for characteristic features of droplets. m 
is the spontaneous magnetisation measured in our simulation, m, the expected one from 
series expansions (Essam and Fisher 1963). m r =  -l.57( I - T / T c ) 0 ~ 3 ' 2 5 .  

0.040 0.99 0.791 0.978 2 1.875 0.553 0.553 1 .ow 

0.100 0.99 0.773 0.951 4 3.000 0.667 1.000 I .500 
0.075 1.00 0.775 0.962 3 2.50 0.63b 0.80b 1 .26b 

0.150 1.03 0.731 0.927 
0.200 - - 0.906 

a p = ~ ( d - l )  Widom (1972). 
Index U is given by Pawley er a/ (1984) or by George and Rehr (1984). 

At this point we mention Widom (1972), who proposed that temperature dependence 
of the surface tension is given by ? ( E )  = (K - K, )Y(d - ' )  for a macroscopic interface 
( I  >> td ) .  The above expression proves equivalent to putting 

p = v ( d -  1)  (11) 

in (9). This expression leads us to an assumption of 

that is, S( R) - R ( d - l )  with R the radius. The numerical values of the indices appearing 
in (6)-( 12) are tabulated in table 1 for dimensions d = 2, 3 and 4, in comparison with 
our experimental ones. 

In a square Ising lattice, the above point of view explains why a good result has 
been obtained by Fisher's model: no difference is verified between the models (7) and 
(12) owing to the coincidence between l / v D  and ( d  - 1)/D or to that between d - 1 
and v ( d -  1). 

Critical droplets, whose ranges are smaller than the correlation length 6, have the 
same scaling properties as the correlation droplet with the range 6. This is due to the 
similarity in the renormalisation of their thermal fluctuation as given in (4) and ( 5 ) .  

Thus each critical droplet will be distinct from the medium of spins in the average 
over its fluctuation. We note here that for each droplet the fluctuation of spins lying 
on the perimeter has been taken into account at each MC step. Accordingly the 
boundaries of our droplets have appeared only through the average over the fluctu- 
ations. Besides, these droplets have been shown to follow the scaling law, as the result 
of averaging over the ensemble of our MC simulation. 

The percolative connectedness is very sensitive to thermal fluctuation, even the 
smallest (a string can be broken by a spin flip). It is then inadequate for the prescription 
of critical droplets. The droplets based on the Coniglio-Klein criterion (see figure 
l(c))  are clusters consisting of bonds with a specific probability among the up spins 
at each MC step. Such bonds would work to cut off the other bonds in the region of 
dense up-spins so that a cluster might be the critical droplet. 

Next we discuss the indices obtained in this experiment. The index 5 asymptotically 
approaches 0.80 as E approaches 0 and nearly equals ( d  - 1)/D = 0.780. The index p 
is equal to 1.00 and close to Widom's 1.26 provided that this theory is applicable to 
a finite size droplet. The ratio p / 5  differs from vD by 20%. This figure is thought of 
as the degree of the deviations of our results from the familiar critical indices. It is 
not clear, however, whether it is attributable to our system being finite and/or being 
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away from criticality. Our result for the fractal dimensionality D' = 2.76 is larger than 
D = d - /3/ U = 2.50. Moreover, the following may be worth noting. The radius in ( 3 )  
is given by the maximum length of a straight line extending from the centre to the 
perimeter for a droplet, while the number of steps is the scale of length in the droplet 
construction. This duality could be serious in estimating numerical value of D' for 
small droplets. It is because the number of steps cannot be smaller than the length of 
a straight line between any two sites. 

Note added in proof: At the temperature 0.980 Tc, no droplet has proved to percolate infinitely in 8900 MC 
steps/spin for 40 x40 x40 system: the values of the indices 5, CL and D appear to equal those in the text, 
while all the evaluation has not been finished. A study of a metastable state is in progress. 
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